When does a polynomial ideal contain a positive polynomial?

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When does a Polynomial Ideal Contain a Positive Polynomial?

We use Gröbner bases and a theorem of Handelman to show that an ideal I of R[x1, . . . , xk] contains a polynomial with positive coefficients if and only if no initial ideal inv(I), v ∈ R, has a positive zero. Let R = R[x1, . . . , xk], R = R[x1, . . . , xk] and, considering Laurent polynomials, let R̃ = R[x1 , . . . , xk ], R̃ = R[x ± 1 , . . . , x ± k ]. For a = (a1, . . . , ak) ∈ Z, write x = ...

متن کامل

When is a polynomial ideal binomial after an ambient automorphism?

Can an ideal I in a polynomial ring k[x] over a field be moved by a change of coordinates into a position where it is generated by binomials x − λx with λ ∈ k, or by unital binomials (i.e., with λ = 0 or 1)? Can a variety be moved into a position where it is toric? By fibering the G-translates of I over an algebraic group G acting on affine space, these problems are special cases of questions a...

متن کامل

When Is a Trigonometric Polynomial Not a Trigonometric Polynomial?

for some nonnegative integer k and complex numbers a0, . . . , ak, b1, . . . , bk ∈ C. Trigonometric polynomials and their series counterparts, the Fourier series, play an important role in many areas of pure and applied mathematics and are likely to be quite familiar to the reader. When reflecting on the terminology, however, it is reasonable to wonder why the term trigonometric polynomial is ...

متن کامل

Computing the Dimension of a Polynomial Ideal

Following ideas from [Hei83, DFGS91, MT97] and applying the techniques proposed in [May89, KM96, Küh98], we present a deterministic algorithm for computing the dimension of a polynomial ideal requiring polynomial working space.

متن کامل

On the polar derivative of a polynomial

For a polynomial p(z) of degree n, having all zeros in |z|< k, k< 1, Dewan et al [K. K. Dewan, N. Singh and A. Mir, Extension of some polynomial inequalities to the polar derivative, J. Math. Anal. Appl. 352 (2009) 807-815] obtained inequality between the polar derivative of p(z) and maximum modulus of p(z). In this paper we improve and extend the above inequality. Our result generalizes certai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2001

ISSN: 0022-4049

DOI: 10.1016/s0022-4049(00)00148-1